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Abstract— This article assesses the coherency of Global
Navigation Satellite System (GNSS) signals reflected off the
oceans and sea ice under grazing angle geometries and received
aboard low Earth orbit (LEO) CubeSats for precision altimetry
applications. The coherency is characterized as a function of
ocean surface conditions and reflected signal parameters based
on Spire Global CubeSat data collected from January to April
2019. The data contain 50-Hz GPS L1 and L2 carrier phase
estimations obtained by open-loop tracking. Indicators based on
the circular statistics of the excess-phase noise are developed to
identify coherent and semicoherent reflections. Based on these
indicators, we found that ∼1% and 44% of GPS reflections over
the ocean and sea ice, respectively, have potential for precision
altimetry. The coherent and semicoherent reflection rates reach
23% in areas less than 200 km from the coastline and under calm
sea conditions. Over young sea ice over the Arctic, this rate can be
as high as 70%. There is a strong relationship between coherency
and signal strength, and the coherency occurrence rate improves
as the grazing angle decreases. The quality of the L1 and L2
coherent reflections is similar over sea ice, while, for reflections
over the ocean, L1 signals are predominantly noisier and less
coherent than the L2 signals. Using a postprocessing filtering
method, the semicoherent reflections can achieve a similar level of
altimetry precision as that of the coherent ones, thereby increas-
ing the along-track length of the retrieved altimetry profile.

Index Terms— Carrier phase estimations, coherent reflections,
GPS reflection, ocean surface, precision altimetry, sea ice,
semicoherent reflections.

I. INTRODUCTION

THE current global gridded sea surface topography maps
are provided by satellite radar altimeters, such as Jason-3

and Sentinel 3A [1]. These maps cannot resolve features with
a spatial scale of less than ∼100 km, and their revisit time
is ∼10 days. To improve ocean and climate modeling, better
spatial and temporal resolutions of mesoscale sea surface
height (SSH) observations are needed [2]. The upcoming Sur-
face Water and Ocean Topography (SWOT) satellite mission
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is expected to offer a 2-D spatial resolution of 10 km × 10 km
along its swath although its performance at the mesoscale and
submesoscale remains to be demonstrated [3].

A potential alternative to improve the SSH sampling is to
operate a constellation of low-cost CubeSats on low Earth
orbits (LEOs) that collect the Global Navigation Satellite
System (GNSS) signals reflected off the ocean surface. It relies
on the bistatic GNSS Reflectometry (GNSS-R) technique
applied to space-based platforms, first suggested by Martin-
Neira [4] in 1993. Remote sensing using signals of opportu-
nity, such as GNSS reflected off the ocean surface, has found
applications including ocean winds [5], significant wave height
(SWH) [6], sea roughness [7], and ocean altimetry [8]–[10].
Several GNSS-R missions have been deployed in recent years.
For example, the delay Doppler maps (DDMs) produced
from the U.K. TechDemoSat-1 (TDS-1) and NASA’s Cyclone
GNSS (CYGNSS) demonstrated the feasibility of the GNSS-R
for ocean altimetry even though the receiver systems were
optimized for ocean wind [8], [11]. The DDMs represent the
power of the reflected GNSS signal as a function of code delay
and Doppler frequency via cross correlation with a locally
generated reference signal. Since they are based on the chip
length of the GNSS ranging code, they produce along-track
SSH at meter-level precision and tens of km footprint size that
is inadequate for mesoscale oceanography (e.g., [8] and [12]).
However, the first evidence of mesoscale ocean eddies sig-
nature has been detected by combining the dense spatial and
temporal data coverage of the CYGNSS constellation [13].

To improve the altimetric precision, GNSS-R carrier phase
observables are used. If the GNSS reflections have sufficient
coherent energy, then the carrier phase can be estimated
with cm-level precision at ∼1-3 km spatial resolution at
low grazing angles. This enables the application to surfaces
that are smooth relative to the GPS L-band wavelength
(∼20 cm). Low grazing angles over sea ice or relatively
calm ocean surfaces help to reduce the surface roughness
effect on the carrier signal. At the extreme near tangent to
the surface angles, spaceborne interferometric carrier phase
beats between direct and sea ice reflected signals were ini-
tially observed during a CHAMP occultation [14], but these
near zero-grazing angles are too low for precision altimetry.
Experiments on coherent reflection tracking for altimetry have
been conducted on ground-based GNSS receivers [15]–[19]
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and airborne receivers [20], [21], including stratospheric bal-
loons [22]. The design of coherent GNSS-R from a CubeSat
was first proposed in [23]. Simulation studies were conducted
to formulate the prerequisites and retrieval expectations of
spaceborne ocean phase altimetry [24]. Recently, processing of
raw intermediate frequency (IF) GNSS-R signal recorded on
TDS-1 and the CYGNSS satellites demonstrated that carrier
phase altimetry from space can achieve better than 10-cm
precision over sea ice [25], lakes [10], [26], a river [27], calm
oceans [9], [10], and rain forest [10].

Experiments with airborne receivers found that reflection
signal grazing elevation angles within 5◦–30◦ and over sur-
faces with low wind speeds are more likely to provide coherent
GNSS ocean reflections [20]. The first analysis of CYGNSS
carrier-phase altimetry data over the oceans around Central
America confirms that under grazing geometries coherency
occurs for wind speeds <6 m/s and wave heights less than
1.6 m [9]. Spaceborne studies show that sea ice has the
potential for strong GNSS coherent reflections [14], [25], [28],
[29]. However, not enough real data have been collected to
determine if the phase-delay altimeter technique from space
is viable over a wide range of ocean conditions.

Since 2019, Spire Global Inc. has been operating sev-
eral polar-orbiting GNSS radio occultation (RO) CubeSats
in GNSS-R mode for ocean altimetry by updating their
onboard receiver software. These CubeSats already provide
atmospheric profiles that are incorporated into weather fore-
casting models [30]. The new altimetry mode tracks the GPS
L1 and L2 signal carrier phases reflected off the ocean surface
at grazing angles. Initial results show that the data capture
coherent reflections over sea ice and ocean [29], [31], [32]
with altimetry retrievals at cm level over sea ice and ∼2-cm
RMS relative to a mean sea surface (MSS) over the ocean [33].

This article assesses the quality of phase-delay altimetry
data collected by four Spire CubeSats from January to April
2019. Two characteristics of the Spire CubeSats differ from
TDS-1 and CYGNSS. First, unlike the CYGNSS and TDS-1
that use nadir pointing antennas to receive the reflection
signals, the Spire CubeSat side-looking RO antennas are
repurposed for collecting reflection data at grazing angles.
The antenna gain is low for signals with elevations above
the Brewster angle because the signals are predominately
left-hand circular polarization (LHCP) [34]. The Brewster
angle is about 30◦, 18◦, and 7◦ for first-year/multiyear (MY)
sea ice, new/young sea ice, and sea water, respectively, at GPS
L-band frequencies [35], [36]. Second, the Spire CubeSats
track both L1 and L2 frequencies, which should improve the
ionospheric correction. However, the hardware biases in the
current Spire CubeSats receivers are not accurately calibrated,
which impacts the absolute ionospheric correction.

Once the high-rate carrier phase data are gathered,
a coherency detection scheme is required to separate sig-
nals with precise range information from random noise. The
detectability of coherent phase measurements depends on
the receiver platform and hardware, carrier phase tracking
software, reflection surface properties, and the incident angle
of the GNSS signal at the specular point (SP). For signals
reflected over smooth ocean surfaces, we expect the coherently

reflected signal phase to last over a reasonable amount of
time. Techniques to separate the coherent and noncoherent
parts of the reflection signal waveform based on coherent
and noncoherent averaging have been tested on the ground,
airborne, and space-based platforms (e.g., [22], [37], and [38]).
For example, Semmling et al. [16] applied a maximum phase
gradient algorithm to obtain the continuous coherent phase
observations for data obtained from a ground-based GNSS
interferometric receiver over Disco Bay. For the same exper-
imental setting, Liu et al. [18] implement an algorithm based
on the circular nature of the carrier phase to improve the
tracking performance over rough-sea states.

For spaceborne observations, the reflection geometry and
the speed of the receiver platform are different from the
ground-based systems. There are several ongoing investiga-
tions for ways to detect coherently reflected GPS signals in
CYGNSS data. For example, the phase power method argues
that, if the phases are coherent, the signal power will system-
atically increase with the integration time relative to a nominal
power, while this is not true for noncoherent reflections
characterized with random phases [39]. The Entropy method is
based on the assessment of the principal axis decomposition
of the zero-delay Doppler waveform: if there is mainly one
principal axis of energy direction, the signal is coherent [40].
The third method analyzes the extent of power spread in the
delay Doppler space from the CYGNSS level 1 DDM data
product: the wider the power spread, the less coherent are the
reflections [41]. These methods are all based on indicators
derived from reflected signal power. Analysis indicates that
they offer similar coherent detection results over homogeneous
land surfaces [42].

Not all these detection schemes can be applied to the Spire
50-Hz phase-delay observations due to the lack of access to the
power waveform from the correlator’s output. Moreover, signal
power alone may not be a reliable indicator of the usability or
quality of the carrier phase measurements. Our examination of
three-month Spire GNSS-R data indicates that a high signal
power does not always correspond to high-quality carrier
phase estimations (see discussions in Section IV). Alternative
approaches that directly utilize carrier phase measurements
must be explored for reliable coherent detection schemes.
Roesler et al. [29] presented a GNSS-R signal coherency test
based on the circular nature of the excess-phase measurements.
Wang et al. [32] proposed a support vector machine (SVM)-
based machine learning method that utilizes the circular
statistics-based coherency test as its feature and demonstrated
98% detection accuracy when applied to the Spire data. In this
article, we introduce two additional coherency detectors based
on the carrier phase circular statistics: one derived from the
excess-phase rate and the other from phase noise. These detec-
tors not only detect coherent signals but can also be used to
identify semicoherent reflections. The semicoherent reflections
can be further processed to yield a precision phase range for
altimetry applications. The introduction of the semicoherent
reflections allows us to extend the altimetry measurement
intervals.

The remainder of this article is organized as follows.
Section II describes the Spire CubeSat data used in this study.
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Section III focuses on the methodologies of carrier phase esti-
mation, the coherency detectors extraction, the detector’s sen-
sitivity analysis, and the classification of coherency regimes.
Section IV presents the results of applying the coherency
detection and classification to GPS L1 and L2 reflection data
collected by Spire CubeSats from January to April 2019.
A comparison of the results with the signal-to-noise ratio
(SNR)-based indicator is presented. The detected coherent
and semicoherent signal levels as functions of sea surface
conditions, spatial patterns, satellite elevation angle, received
signal SNR, and dependence on wind speed, wave height, and
ice age, as well as the quality of the L1 and L2 reflection
signals, are discussed in this section. Section V provides
examples of altimetry retrievals to validate the performance
of the indicators. Conclusions are drawn in Section VI.

II. SPIRE GLOBAL GNSS-R DATA

Spire Global Inc. started building commercial GNSS RO
CubeSats in 2016. By July 2019, it had about 25+ oper-
ational commercial CubeSats orbiting at ∼500-km altitude
in various inclinations performing GPS-RO measurements
over the ocean and poles. The Lemur-2 microsatellites are
equipped with a dual-frequency (L1 and L2) zenith antenna for
precise orbit determination (POD) and high-gain forward- or
backward-looking antennas to collect dual-frequency RO data.
They carry the proprietary STRATOS payload. The STRATOS
receiver outputs are used to retrieve atmospheric profiles and
ionospheric measurements. For more information on Spire
CubeSat capabilities, readers are referred to [43].

Starting in 2019, Spire reprogrammed some of their oper-
ational STRATOS receiver software onboard the CubeSats to
operate in a phase-delay altimetry mode. The CubeSats collect
the direct and reflected signals using the same side-looking
RHCP antenna, which was originally intended for RO mea-
surements. Only incident GPS reflection signals at low grazing
angles between 5◦ and 30◦ over the ocean surface and lasting
between 1 and 5 min are collected. The onboard software
performs open-loop (OL) tracking of the direct and reflected
GPS L1 and L2 carrier signals to generate 50-Hz carrier phase
estimations [44].

We evaluate observations collected between January and
April 2019 from four Spire LEO CubeSats (SVN 084, 086,
088, 090) with a total of 2500 reflection events. Fig. 1 shows
the SP tracks of these reflection events, color-coded according
to the reflection signal SNR values. Table I lists the date
and number of events for each Spire CubeSat. The variations
in the collection dates and number of events are due to the
fact that not all four Spire CubeSats are in the GNSS-R
altimetry mode during the same time period. The number of
daily events collected may not represent the full capacity of
a functional altimetry mode. Note that SVN 084 has a lower
inclination orbit than the others and captures reflections up
to a maximum latitude of 60◦, while all others also cover
the poles. To separate reflections between the ocean and
sea ice, we construct a sea-ice flag based on the weekly
National Snow and Ice Data Center (NSIDC) sea-ice extent
product [45].

Fig. 1. Spire Global CubeSat GNSS-R data coverage map. The tracks of
reflections SPs are color-coded according to the received GPS L2 signal SNR
averaged over 1 s. Reproduced from [29, Fig. 2].

TABLE I

SPIRE SVNS’ DATE SPAN AND NUMBER OF REFLECTION
EVENTS DURING JANUARY TO APRIL 2019

III. METHODOLOGIES

A. GNSS-R Carrier Phase Estimation Method

The OL carrier phase tracking algorithm employed by the
Spire CubeSats generates a local carrier signal replica based
on a priori phase model φ0. The residual carrier phase δφ is
the difference between that of the received signal φ and the
local replica φ0. Both δφ and SNR are estimated from the in-
phase (I ) and quadratic phase (Q) components of the prompt
correlators at a 50-Hz sampling rate

δφL = arctan(QL/IL ) (1)

SNRL = aL

√
I 2

L + Q2
L (2)

where the subscripts L = 1, 2 indicate GPS L1 and L2 carriers,
respectively, a1 = 0.1263, and a2 = 0.0736 [44].

The residual phase and the a priori phase model are used
to obtain phase estimation

φL(t) = φL0(t) + δφL(t) + 2nπ (3)

where n is an integer carrier cycle ambiguity constant along
each SP track (event). The onboard a priori phase model φL0

estimates the SP on the WGS84 reference ellipsoid based on
the locations of the GPS satellite and the CubeSat following
geometric optics reflection laws. The SP footprint of the
carrier phase estimations is represented by the first Fresnel
zone (FFZ), and for a flat surface, its size increases as the
SP satellite elevation decreases [24], [46]. For a CubeSat at
an altitude of ∼500 km, the instantaneous footprint is an
ellipse with a major axis extent ∼1.4–5 km in the along-track
direction and a relatively constant minor axis extent ∼1 km.
For the Spire events collected in an RO setting with a horizon-
looking antenna, the SP ground speed decreases with satellite
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TABLE II

FFZ DEPENDENCE ON SATELLITE ELEVATION FOR A CUBESAT ORBIT
HEIGHT OF 500 KM AND MEDIAN GROUND SCAN SPEED FOR A

HORIZONTAL-LOOKING RO ANTENNA. THE CURVATURE OF THE

EARTH HAS BEEN TAKEN INTO ACCOUNT

elevation, and the steepness of the change depends on the
geometry evolution. Table II lists footprint size and typical
ground scan speed for a range of elevations. The phase
coherency indicators presented in this article use 1-s 50-Hz
phase measurements. The along-track resolution of the indi-
cators is ∼6–8 km for signal elevation between 5◦ and 30◦.
We should note that there are other factors besides the FFZ
that influence coherency and altimetry retrieval precision. For
example, the RHCP reflectivity increases as the elevation
decreases below the Brewster angle; the amplitude of the
RHCP reflected signals is larger below the Brewster angle,
which includes both coherent and incoherent terms. Another
point is a higher coherent-to-incoherent scattering ratio at graz-
ing angles according to the Rayleigh criterion. These factors
improve the carrier phase observation quality at low elevations.
However, troposphere model corrections have larger errors for
very low grazing angle measurements that negatively impact
the precision of altimetry retrieval.

B. GNSS-R Carrier Phase Coherency Indicators

Determination of the level of coherence in the reflected car-
rier phase time series is the prerequisite to the utilization of the
carrier phase estimations for precision altimetry applications.
Fig. 2 illustrates the difference between coherent and nonco-
herent reflected signals. Fig. 2(a) shows two 2-s segments of
reflected GPS PRN 24 L2 carrier phase estimations collected
on February 1, 2019, by the Spire SVN 090 CubeSat. The
coherent nature of the phase measurement is apparent in the
top left plot as indicated by the continuous phase values with
a relatively constant phase rate, while the top right plot shows
random phase values that are characteristics of noncoherent
signals. If the phase is coherent, then we should be able to
express the phase variation as a rotating phasor in time. For
the noncoherent signal, its corresponding phasor is a bundle
of random points. These are indeed the cases, as shown in
Fig. 2(b). The coherency detectors described below are derived
from the phasor representation of the phase measurements.

Before we dive into the specific coherency detectors, it is
important to address the phase measurement model. The
reflection signal excess phase is the difference between the
received and modeled phases φL0. It is computed in real time
by the GNSS receiver onboard a CubeSat. The reflected signal
phase model φL0 is based on the geometric range between
the GPS satellite, the SP computed on the WGS84 ellipsoid,
and the Spire CubeSat antenna. The reflection signal excess
phase includes unmodeled errors in the GPS satellite and the
CubeSat positions, instrument and clock bias, atmospheric and

Fig. 2. GPS PRN 24 L2 reflection signal carrier excess phase δφ2 obtained
from Spire CubeSats SVN 090 on February 1, 2019. The signal was
transmitted from GPS PRN 24 and received by Spire SVN 090 starting at
02:26:37 UTC. The plots on (left) are an example of the coherent dataset from
22 s to 24 s, while the plots on (right) are an example of the noncoherent
dataset from 10 to 12 s. (a) Excess-phase time series. (b) Polar representations
of the excess phase. (c) Polar representations of the angular phase rate.
(d) Polar representations of the angular phase noise.

ionospheric effects, and an error due to the unknown height
of the reflection surface. At grazing incident angles and for
receivers onboard the CubeSats, the spatial scale variations of
the atmospheric and ionospheric effects are much larger than
that of the sea surface variations along the ∼4-km ground
track covered over 1 s. Therefore, the excess phase delay
variations are mainly driven by the unmodeled changes in
the signal propagation geometric path. The reflection surface
height above the ellipsoid over the coherent footprint typically
varies slowly along this ∼4-km ground track over the ocean
and sea ice. Consequently, when the phase is coherent, its
phase rate is expected to change continuously and gradually.

Since the time interval between two adjacent measurements
is constant, the phase rate is directly dependent on the angular
phase increment between two adjacent measurements δφ̇L =
δφL(i + 1) − δφL(i). If the phase rate is relatively constant,
then, in a polar coordinate, δφ̇L samples should cluster along
a narrowly focused direction. When the phase is completely
noncoherent, the δφ̇L samples are uniformly distributed around
the unit circle. Fig. 2c) shows δφ̇L samples in the polar
coordinates for the coherent and noncoherent segments of data.
The clear distinctions between the phase rates in the polar
representation for these two examples indicate that it may
serve as an indicator for signal coherency.
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The circular statistics derived from the phase rate in the
polar representation have been applied to ground-based GNSS-
R altimetry to detect coherent segments [18] and estimate the
sea surface height [47]. We apply the same concept to the
space-based GNSS-R measurements. Roesler et al. [29] used
two parameters, the circular length, and the circular kurtosis
to determine whether an angular set ai , i = 1, 2, . . . , N is
uniformly distributed around the unit circle. The definitions
for the two parameters are based on [48].

1) Circular Length: It is defined as the length of average
of the unit vectors of the dataset

ζ = 1

N

∣∣∣∣∣
N∑

i=1

cosai +
N∑

i=1

sinai

∣∣∣∣∣. (4)

2) Circular Kurtosis: A measure of the “peakedness” of an
angular dataset

K = 1

N

N∑
i=1

cos(2(ai − āi)) (5)

where āi is the mean of the dataset. If ai is uniformly
distributed over the unit circle, then ζ = 0 and K <= 0.
If the dataset is completely coherent, the phasors should be
aligned in one direction, and ζ = 1 and K = 1. The closer
the ζ and K values are to 1, the more coherent the signal
is. The phase rate circular length and circular kurtosis are the
indicators used in [29].

In this article, we introduce the circular statistics for phase
noise �δφ and compare its performance with that of the phase
rate δφ̇L . The phase noise �δφ is computed by subtracting a
smoothed version of the excess phase. The phase noise �δφ

for the same two segments of data shown in Fig. 2(a) is
plotted in the polar coordinate in Fig. 2(d). For completely
noncoherently reflected signals, �δφ behaves like noise. For
coherent reflections, �δφ varies smoothly and contains infor-
mation about the reflection surface properties. Cai et al. [49]
show that the additive noise on the phase delay of a GNSS
signal follows a Von Mises distribution, which is also referred
to as the circular normal distribution. Higher noise power is
associated with a wider distribution peak. For the examples
given in Fig. 2, the polar plots for the phase rate δφ̇L and
phase noise �δφ are similar for the noncoherent phase. When
the phase is coherent, the mean phase noise direction is near
zero, as shown in Fig. 2(d). In Section II-C, we show that
the phase-noise statistics are more sensitive to the phase-rate
variations within the 1-s period and are a better indicator of
coherency than that of the phase rate.

C. Phase Coherency Indicators Sensitivity Analysis

We use a 2-s excess phase δφ data segment collected by a
Spire CubeSat to analyze the sensitivity of the phase rate and
phase noise circular statistics to the coherency level. The first
1-s data are coherent, while the remaining 1 s is noncoherent,
as shown in Fig. 3. From these 2-s data, we created 11 sets of
1-s data segments by sliding a 1-s window from left to right,
as illustrated in Fig. 3. These 1-s data segments progressively
evolve from being completely coherent in Set 1 to completely

Fig. 3. 2 s of excess-phase δφ observations with the first 1 s being coherent
followed by 1-s noncoherent data. From these 2-s data, we created 11 sets
using a 1-s sliding window sliding at 0.1-s increment.

noncoherent in Set 11. We then add random noise from a
circular Von Mises distribution to each data segment, with
noise levels ranging from 0◦ to 180◦. Each noise level is
simulated 1000 times to produce a statistical performance
measure. At each noise level, the circular length and kurtosis
are computed for the phase noise �δφ and the phase rate δφ̇L ,
for each of the 11 sets.

Fig. 4 shows the scatter plots of the phase rate and phase
noise mean circular length ζ̄ versus mean circular kurtosis
K̄ , as well as their 1σ -standard deviation of the 11 sets of
data for six added noise levels: 0◦, 18◦, 45◦, 72◦, 108◦, and
162◦. Without additional noise (0◦), the phase-rate indicators
show the largest separation in (K̄ and ζ̄ ) for all 11 sets of
data. As the noise level increases, the mean values decrease,
while their standard deviations increase, and the values for the
datasets also become closer to each other. At the noise level
162◦, all the sets are noncoherent. The mean circular lengths
for the phase rate δφ̇ and phase noise �δφ fall in the ranges
(0.1, 0.35) and (0.3, 0.6), respectively. Based on examinations
of the CubeSat data, a reasonable range of noise is between 45◦
and 72◦. Fig. 4 shows that the �δφ indicator is more sensitive to
the coherency content of the signal and is, therefore, selected
as the coherency indicator in this study.

D. Coherency Classification Based on Phase Noise
Circular Statistics

Based on the discussions above, we focus on using phase
noise circular statistics as a coherency indicator to classify
the three regimes of coherency over a 1-s segment of Spire
CubeSat observations: coherent, semicoherent, and noncoher-
ent. A coherent segment allows precise range estimation of
the reflected signal. A noncoherent segment is dominated by
noise. When a segment is semicoherent, it contains a mixture
of coherent and noncoherent observations. It can be viewed
as “noisy” coherent measurements with a higher probability
of carrier phase cycle slips [50]. The question is: what are
the boundary values of the circular statistics that define these
three regimes?

To obtain the boundary values, we compute the phase-noise
statistics over nonoverlapping 1-s segment data listed in
Table I. Fig. 5 shows scatter plots of ζ and K for reflections
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Fig. 4. Evolution of the circular statistics parameters for �δφ (red) and δφ̇
(green) with the 11 sets of data segments shown in Fig. 3 as a function of
added excess-phase noise. On each plot, for both phase noise and phase rate
indicators, set #1 (coherent) is on (top right), and set #11 (noncoherent) is on
(bottom left). The scatter plots show (K̄ , ζ̄ ) and their 1-σ error. The added
Von Mises noise level for each plot is labeled. The points Bc and Bsc are the
coherent and semicoherent boundaries discussed in Section III-D.

Fig. 5. Scatter plots of phase-noise �δφ circular statistics for nonoverlapping
1-s data segments over (Left) ocean and (Right) sea ice. In the ocean
scatter plot, there are 24 green lines, which delimits 23 zones; each has a
corresponding set of P1(z) and P3(z) values. The line marked Bsc defines the
lower boundary of semicoherent reflection, and the line marked Bc defines
the boundary between coherent and semicoherent zones. The same boundaries
are marked in the sea-ice scatter plot to separate the coherent, semicoherent,
and noncoherent regimes.

over the ocean and sea ice. The parallel lines in Fig. 5 divide
the data points into “zones.” A higher zone value corresponds
to higher ζ and K values that are characteristic of more
coherent reflections.

To obtain a more quantitative indication of the coherency
level, we define P1(z) and P3(z) as the probability of having
at least one- and three-cycle slips, respectively, within a zone
z. For the 23 zones shown in Fig. 5 (left), we estimated the
number of cycle slips in each 1-s segment and computed P1(z)
and P3(z) values. A cycle slip is declared if the unwrapped
phase change exceeds 0.7 cycles within ten phase samples. The
results are plotted in Fig. 6. Based on the plot, we heuristically

Fig. 6. Probability of a discontinuity within a second of excess-phase
observations (segment) with characteristics (K and ζ ) that belong within
a zone. There are 23 zones delimited by the green lines in Fig. 5(a). The
squares (circles) are the probability that there is at least 1 (respectively, 3)
discontinuity in one segment of δφ. The 15% dotted line level is the
threshold chosen to delimit the noncoherent (gray), semicoherent (blue), and
coherent (red) regions.

set the boundary Bsc at Zone 13 and Bc near Zone 19. Data
points above Bc are considered coherent, and data points
above Bsc but below Bc are considered semicoherent. The
Bc boundary represents the data segment that has P1(z) =
15%, while Bsc boundary corresponds to P1(z) = 80% and
P3(z) = 15%. Based on the boundaries defined by Bc and
Bsc, the percentage of cycle slips contained by 1-s coherent
segment is 15%, by semicoherent reflection is between 15%
and 80%, and by noncoherent reflections is more than 80%.
These boundary values are used to classify the data points in
Fig. 5: into coherent, semicoherent, and noncoherent for the
ocean and sea ice.

The boundary values set above also have correspondences
with the noise levels, as shown in Fig. 4. For example, Bc

maps to ζ = 0.9 and K = 0.63 in Fig. 4, which corresponds
to the coherent data segment 1 in Fig. 3 with a 45◦ added Von
Mises noise. Bsc maps to ζ = 0.72 and K = 0.35 in Fig. 4,
which corresponds to the coherent data segment 1 in Fig. 3
after adding 108◦ Von Mises noise.

We further plotted the PDFs of ζ and K for the data
collected over the ocean and sea ice on a log scale in Fig. 7.
Over the ocean, the dominant noncoherent distribution ends
around (K = 0.4; ζ = 0.6), while over sea ice the coherent part
starts around (K = 0.7; ζ = 0.8). Furthermore, the extracted
distributions of the coherent and semicoherent intervals appear
to follow bell-curve features that again enhance the validity of
this classification. Note that the bell curves are slightly better
defined in the circular-length domain.

The boundary values are also consistent with the altimetry
retrieving results. Data segments that fall within the coherent
regime defined by the boundary value Bc resulted in consistent
high precision altimetry results. Data segments from the semi-
coherent reflections zones contain weak coherent components
that can be easily perturbed by the diffusive scattered signals.
For semicoherent reflections, the phase estimations contain
range information but have a low level of cycle slip corruption,
which can be filtered for precise altimetry applications [50].

Table III summarizes the boundary conditions for the two
coherency indicators. In addition, the coherency test requires
a Spire L2 reflection signal SNR > 15 v/v. This value is
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Fig. 7. PDF of (Top) �δφ circular length and (Bottom) kurtosis for reflections
over (Left) ocean and (Right) sea ice. The data are divided according to
noncoherent (gray), semicoherent (blue), and coherent (red) detection results.

TABLE III

CIRCULAR STATISTICS COHERENCY BOUNDARY VALUES

chosen as the mean + one-standard deviation of the nonco-
herent ocean SNR (zones 1–11). Over sea ice, the value is
in the same range. Our analysis indicates that the L2 SNR
criteria and the phase noise statistics test yield consistent
classification 92% of the time. Close to the boundary zones,
there is not always a one-to-one correspondence for levels of
coherency between the phase noise and phase rate indicators.
However, the total number of coherencies (including both
semicoherent and coherent) is similar. For instance, 4% of
the semicoherent data classified by �δφ is treated as nonco-
herent using δφ̇ statistics and vice versa. The discrepancy
typically happens at the end of a coherent section. Whether
to discard these data as noncoherent will depend on the
results of altimetry profile validation studies (see Section V).
The results provided in Section IV are based on the �δφ

indicator.

IV. COHERENCY DETECTION RESULTS

A. Coherent Signal SNR, Elevation, and Duration

We applied the boundaries defined above to classify data
collected by Spire CubeSats. The coherent and semicoherent
reflection signal SNRs, the incident signal elevation at the SP,
and the coherency duration that is computed by aggregating
consecutive 1-s segments are analyzed for the ocean and sea-
ice surface reflections, respectively. Table IV summarizes the
detection results based on the phase-noise coherency indicator.

A total of 2066 and 476 reflection events were analyzed over
the ocean and sea ice, respectively. Among them, 126 and
215 have coherent and semicoherent segments over the ocean,
respectively, while 294 and 346 contain coherent and semi-
coherent segments over sea ice, respectively. It is clear that a
larger percentage of the coherent events occurs over sea ice
than over the ocean.

1) Coherency Occurrence Rate: There are a total of
540 985- and 50 631-s data for oceans and sea ice, respec-
tively. For ocean reflections, 0.4% are coherent, and 0.6% are
semicoherent. This is in contrast over sea ice where 23.5%
are coherent and 20.8% are semicoherent. The total length of
coherent reflections is more than 10% higher than that of the
semicoherent reflections over sea ice compared to being 33%
lower over the ocean.

2) Coherency Dependence on SNR: Fig. 8 shows the global
maps of the SP tracks of detected coherent and semicoherent
reflections. The left map is color-coded according to the type
of surface (ocean and sea ice) and coherency level (coherent
and semicoherent) determined by the phase noise circular
statistics. The right map is color-coded according to the
reflected signal SNR at the L2 band. Comparison between the
two maps indicates that, in general, the higher L2 SNR values
obtained in the Spire data correspond to more coherent reflec-
tions. However, there are deviations from this relationship as
shown by the green tracks in the map on the right, which
are associated with reflections that are noncoherent according
to the circular statistics but whose SNR values are greater
than 18 v/v.

To obtain a more quantitative relationship between
coherency levels and the reflection signal SNR, Fig. 9 plots
the number of 1-s coherent and semicoherent segments (left)
and their accumulated occurrence rate (right) for the ocean
and sea ice as a function of reflected L2 signal SNR. For
both ocean and sea ice, the coherency rate increases with the
SNR. Based on the occurrence plot, 80% of the reflection is
coherent or semicoherent for SNR > 35 v/v over sea ice. Over
the ocean, to have 80% coherent or semicoherent reflections,
the SNR must be over 45 v/v. For SNR at 25 v/v, about 20%
and 50% of the reflections are coherent or semicoherent over
the ocean and sea ice, respectively. To use a detection theme
based on the SNR threshold, such as SNR > 40 v/v, would
miss valuable information captured at lower SNR levels and
sometimes misinterpret high SNR segments with coherency,
especially below 60 v/v.

3) Coherency Dependence on Elevation Angle: The
coherency dependence on elevation has been analyzed in [29].
The conclusion still holds true here even though the coherency
indicator is different. For both surface types, the probability of
coherency decreases with increasing incident signal elevation
angle. This is expected because the relative surface roughness
decreases with elevation. In addition, at grazing angles, the
RHCP component of the reflected signal is expected to be
increasingly dominant with decreasing elevation over both
surface types. Consequently, the reflection signal power for
the RHCP antenna on Spire CubeSats is higher at a lower
elevation, which may enable better detection of coherent
signals at lower elevation [33].
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TABLE IV

SUMMARY OF COHERENT MEASUREMENTS BASED ON GPS L2 PHASE-NOISE CIRCULAR STATISTICS

Fig. 8. (Left) Tracks of the 1-s coherent reflection SP tracks color-coded according to the reflection surface type (ocean and sea ice) and coherency type
(coherent and semicoherent). (Right) L2 SNR. The green tracks are not coherent based on the phase noise circular statistics indicator but have SNR > 18 v/v.

Fig. 9. Reflection signal coherency dependence on received mean L2 signal
SNR for ocean (blue) and sea ice (orange). (Left) Number of coherent reflec-
tion (including semicoherent) seconds. (Right) Occurrence rate of coherent
reflections normalized by the total number of coherent and noncoherent
observations within each SNR bin.

4) Coherency Duration: The duration of coherency, as com-
puted by aggregating consecutive 1-s coherent segments,
is longer over sea ice. On sea ice, 25% coherent or semi-
coherent observations are over 1 min compared to 2% over
the ocean, where most durations are less than 10 s.

The coherency duration is also dependent on the sea state
and incident signal elevation. Fig. 10 is a scatter plot of SWH
versus coherency duration, and the data points are color-coded
according to the incident signal elevation. The figure shows
that, while there is a widespread SWH for the short coherent
duration, a longer duration is associated with relatively low
SWH. Coherent reflections at higher elevations predominantly
occur when the SWH is low and their duration is relatively
short.

B. Coherency Spatial Distribution and Dependence on Wind
Speed and SWH

Fig. 8 clearly shows that, other than a few exceptions
off the northwest coast of the USA and one to the east
of South Africa, most coherent and semicoherent reflections

Fig. 10. Scatter plot of SWH versus coherency duration and the data points
are color-coded according to the incident signal elevation.

occur near coastal areas. Previous studies have shown that
coherent scattering is more prevalent in areas, such as the Seas
of Indonesia, where the wind speed is in general low [9], [51].
Our analysis confirms the previous findings. The areas encom-
passing the Pacific Ocean and East Indonesian Seas are
characterized by relatively high coherency occurrence. This
is correlated with the relatively low wind speed in these areas.
Fig. 11(a) plots the SP tracks of the coherent and semicoherent
reflections in the area. The area defined by the red rectangle is
the Indonesian Archipelago within which the coherency rate
is even higher. Fig. 11(b) shows the probability of low wind
speed in the same region. The two maps show that the coherent
tracks occur more frequently in regions of a high probability
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Fig. 11. (a) SP tracks of coherent (blue) and semicoherent (cyan) reflections in low latitude ocean areas with an outlined area over the Indian Ocean and
Indonesian Seas. The red inset defines the Indonesian Archipelago region. (b) Probability of low wind (<7 m/s) occurrence over the days when the three-month
Spire Global data were collected.

TABLE V

RATE OF COHERENT AND SEMICOHERENT REFLECTIONS DEPENDENCE

ON WIND SPEED WITHIN 200 KM FROM COASTLINES

of low winds and low SWH. The thresholds used to create the
map of low wind occurrence are 7-m/s wind speed and 1.5-m
SWH, similar to values used in [9].

Table V lists the coherent and semicoherent reflection
occurrence rate within 200 km from coastlines and under three
wind speed thresholds (6, 7, and 8 m/s) worldwide, the Pacific
and East Indonesia Seas area, and the Indonesian Archipelago.
The local SWH threshold is 1.5 m.

Note that low wind speeds are not a sufficient condition for
coherency. For instance, the presence of ocean swells or oil
slicks modifies the surface roughness regardless of the local
instantaneous wind speed, and the local SWH depends on the
history of the winds over the previous hours.

To perform a more quantitative analysis of the coherency
dependence on wind speed, we identified collocated ASCAT
wind speed measurements with the detected coherent reflection
from the Spire data. The ASCAT data cover 1800-km-wide
swaths and are sampled every 25 km along its track. We define
collocated ASCAT measurements as data gathered within 2 h
and 20-km radius of Spire ocean data. We sampled the Spire
data over 5-s intervals, which translates into an along-track
sampling ∼25 km. The coherency level of these intervals is
set to the maximum coherency level among 5 s of data. This
led to 18 500 collocated 5-s intervals. Fig. 12 (top) shows
the signal SNR versus wind speed derived from collocated
ASCAT data for incident signal elevations in 5◦ bins. The
plots illustrate that, for a given satellite elevation bin, the SNR
decreases for increasing wind speed until the SNR reaches the
cutoff level of ∼15 v/v, below which the signal is too weak to
contain any information. As the satellite elevation bin increases
from the [5◦–10◦] bin to the [25◦–30◦] bin, the peak SNR
values within the bins decrease from ∼50 to 20 v/v, while
the wind speed corresponding to the cutoff SNR value also
decreases.

Fig. 12. Scatter plots of L2 SNR versus (Top) ASCAT wind speed, (Middle)
ERA5 wind speed, and (Bottom) ERA5 SWH binned according to satellite
elevation at the SP. The ASCAT wind speeds are colocated with the Spire
SP within 40 km and 2 h of each other. The red dotted lines are the 15-v/v
SNR level. The lavender circles are the median SNR for data points with
SNR >15 v/v within a 2-m/s bin for wind speed and 1-m bin for SWH.

Because only a limited set of coherent Spire reflections
has collocated ASCAT wind speed data, we obtained Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF)
ERA5 hourly reanalysis data of wind speeds on 0.25◦ × 0.25◦
grids and SWH on 0.5◦ × 0.5◦ grids [52], [53]. We limit the
wind speed data to be within the latitudes range of [−60◦ 40◦],
which contains 74 000 5-s data segments. The relationship
between the Spire SNR binned by elevation and ERA5 wind
speeds behaves similar to the ASCAT wind speeds, as shown
in Fig. 12 (middle). We also have the L2 SNR versus SWH
for the same satellite elevation angle bins, as shown in Fig. 12
(bottom). Here, the SNR decreases with increasing SWH until
it reaches the background level of ∼15 v/v. As the satellite
elevation bin increases from [5◦–10◦] to [25◦–30◦], the peak
SNR values decrease from over 50 to 35 v/v, while the SWH
corresponds to the cutoff SNR decreases from ∼4 to ∼1.5 m.
Those levels are somewhat high, most likely due to increased
uncertainty in the SWH values provided by ERA5. Increasing
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the background SNR level from 15 to 18 v/v would decrease
the SWH cutoff from 0.5 to 2 m.

If we assume that ocean data with SNR >15 v/v correspond
to reflections over low wind/wave type surfaces, then only
10% of the data under low wind/wave conditions are coherent
according to Fig. 12. They occur mainly close to shore
with a one-sigma distance from the coast being less than
100 km. This result over the global ocean is much less than
the 33% mentioned in [9], which is based on the CYGNSS
carrier-phase observations in a restricted region around Central
America with signals at low grazing angles and data collected
under low wind/wave conditions. Note that we heuristically
selected 15 v/v as the background wind threshold value based
on the lowest SNR from the ocean coherent class and the
ASCAT wind speed trend. The ERA5 data seem to indicate
that a higher background wind threshold level of 18 v/v
is more reasonable. With these higher threshold values, the
global statistic reaches 30% of the data over low wind/wave
conditions are coherent.

C. Coherency Dependence on Incident Signal Elevation

The upper two figures in Fig. 13 show that most of the
wind speed for coherent reflections is below 7 m/s with a few
values up to 8.5 m/s regardless of incident signal elevation at
the SP, while the upper SWH levels decrease with elevation
from about 2 to 0.5 m. The strongest SNRs occur at low
grazing angles and low wind speeds, which is consistent with
the theory. In particular, the ocean reflection below Brewster’s
angle of ∼7◦ is dominantly RHCP, which increases the SNR
because the Spire antennas have an RHCP configuration. The
bottom two figures in Fig. 13 emphasize that the coherency
levels are not always related to the SNR levels, and regardless
of elevation, higher coherency levels are observed mainly in
the lower SWH boundaries. We get the same pattern using
ASCAT-Spire collocated coherent events though the number
of collocations is low (150 versus 1000 for ERA5).

We also looked at the coherency dependence on the ERA5
sea wave periods. The trend for the wind-wave period and
swell-wave period versus elevation over the coherent ocean
resembles the ones for wind-speed and SWH, respectively.
Over coherent seconds, the wind-wave periods <4 s have no
dependence on elevation, whereas the swell-wave periods have
a dependence on elevation, with larger periods up to 10 s found
at lower elevations and restricted to 4 s at 25◦ (not shown).

D. Sea-Ice Spatial Patterns and Coherency Dependence
on Ice Age

Table IV shows that 44.3% of the reflections over sea ice are
coherent or semicoherent. To better visualize the coherency
spatial patterns, the SP track over the Arctic is shown in
two one-month periods in Fig. 14. The first period is from
January 8 to February 10 collected by Spire SVN 090 and 086
[see Fig. 14(a)]. The second is from March 15 to April 11
with data from Spire SVN 086 [see Fig. 14(b)]. Coherent
(red), semicoherent (black), and noncoherent tracks (blue) are
shown in the plots. The first period shows more coherent
tracks than the second period. During both periods, the central

Fig. 13. (Top Two Figures) Scatter plot of (Top) ERA5 wind speed
and (Bottom) SWH versus elevation at the SP for coherent and semicoherent
segments of data. The plots are color-coded with mean L2 SNR values.
(Bottom Two Figures) Same as above, but the plots are color-coded according
to the “zones” shown in Fig. 5. The coherency level starts at zone 13
(semicoherent lower limit) and goes up to 23 (upper coherent limit).

TABLE VI

ARCTIC (LATITUDE > 70 ◦N) COHERENCY
CLASSIFICATION ACCORDING TO ICE AGE

section around the North Pole is less coherent. This less
coherent central area corresponds to the location of the MY
sea ice, obtained from NSIDC [54] [see Fig. 14(c)]. As the
sea-ice ages, the coherency level of the reflections decreases.
Fig. 14(d) plots the percentage of coherent and semicoherent
reflections based on the three types of coherency tracks,
as shown in Fig. 14(a).

We further quantify the coherent and semicoherent events
classification according to sea-ice age. Table VI lists the results
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Fig. 14. SP tracks over the Arctic sea ice for (a) 1/8 to 2/10, 2019,
and (b) 3/5 to 4/11, 2019, color-coded by coherency levels (noncoherent,
lavender; semicoherent, black; and coherent, red). (c) Arctic sea-ice age from
NSIDC [54] during the third week of January. (d) Percentage of sea-ice
coherency as a function of ice age over the Arctic based on the tracks shown
in (a) and (b).

for reflections occurred above 70 ◦N latitude. The ice age
is obtained from the NSIDC map. For reflections over FY
ice surface, 35% are coherent, 25% are semicoherent, and
25% are noncoherent. For MY ice, only 7% of reflections
are coherent, 22% are semicoherent, and an overwhelming
71% are noncoherent. This trend is also evident in Fig. 14(b)
where the coherent data are almost nonexistent when the FY
ice became older and thicker than in the first period. This is
consistent with the results provided in [55] that shows how sea-
ice roughness extracted from reflected GPS signals increases
as the ice age increases from new to MY ice. MY ice has low
salinity content, and its surface is weathered by the melting
ponds. The smooth high-salinity content of new-ice roughens
as it drifts and is being pushed by winds and currents, collides,
and piles up. The sea-ice dominant LHCP reflectivity at mod-
erate elevation angle decreases with ice age [55]. Rodriguez-
Alvarez et al. [56] use these properties to successfully classify
sea ice using the GNSS scattering information from the DDMs
collected by TDS-1 over the Arctic. The Spire data indicate
that the ice conditions during the initial growth season seem to
be able to provide long continuous coherent tracks. More Spire
data from a complete growth/melt ice season and comparisons
with other sea-ice products are needed to test under which
sea-ice surface conditions coherent reflections occur. These
conditions may be specific to the low grazing angle setting and
RHCP antennas of Spire CubeSats, which is different from
the sea-ice coherent reflections collected on TDS-1 with an
LHCP antenna at moderate elevation angle [25]. In particular,

sea-ice reflected signals become dominantly RHCP for grazing
angles less than Brewster’s angle with typical values 30◦ and
18◦ for MY/FY and Young Ice, respectively, at GPS L-band
frequencies [35], [36].

E. L1 and L2 Reflection Signal Characteristics Comparison

We apply the same phase noise circular statistics as the
coherency test to signals over the ocean and sea ice. The Spire
L1 carrier phase estimations must be corrected for half-cycle
jumps that arise from the 50-Hz navigation data modulation.
The navigation data are removed by aligning the estimated
phase with the known data bit stream retrieved from the bit
grabber network (bitArc) of Constellation Observing System
for Meteorology, Ionosphere, and Climate (COSMIC) [57].
Out of the initial 2500 events, navigation data bits were
successfully removed from 1800 events. Note that the L1 SNR
is not affected by this correction. In the following, we compare
the SNR and coherency indicators generated from L1 and L2
measurements.

1) L1 and L2 Reflection Signal SNR Comparisons: The vari-
ations in reflected signal SNR are in part due to the roughness
and the electric permittivity of the ocean surface, as well as
the GPS and LEO satellite antenna gain patterns. Higher SNRs
are typically associated with more coherent reflections, but
deviations from this trend do occur, as discussed in Section III.
The generally accepted rule of thumb is that noncoherent
reflections correspond to SNR < 20 v/v on L1 or SNR <
15 v/v on L2. Typically, L1 SNRs are higher than that of L2.
However, the Spire L1 SNR fluctuates more. Our survey of
the three-month Spire data shows that, for L2 SNR values
above 15 v/v, the average L1 and L2 SNRs are 31 and 25 v/v,
respectively. The standard deviation for L1 SNR is 21 v/v,
which is 70% of its mean value. In contrast, the L2 SNR
standard deviation is 12 v/v, about 50% of its mean. Larger
fluctuations in the L1 SNR imply more risks of cycle slips in
the phase estimation [58].

An example of the SNR time series from a reflection event
over the South China Sea is presented in Fig. 15. The event
lasted 180 s, and the satellite elevation at the SP decreased
from 15◦ to 7◦. The L2 SNR starts at ∼25 v/v, reaching a first
peak ∼45 v/v, before it returned to just above the baseline
followed by another peak. According to the circular statistics
shown in the bottom plot, the L2 reflection was semicoherent
once the SNR reached 30 v/v and became coherent over the
second plateau. The dip between the peaks is almost at the
baseline level, but it is classified as semicoherent because it
occurred at a lower elevation angle when the effective ocean
roughness was reduced.

The L1 SNR fluctuation patterns follow that of the L2 SNR
but at an enhanced level. Even though L1 SNRs are higher,
comparison between L1 and L2 circular statistics shows that,
overall, the L1 signal does not provide additional coherent
information over the L2 except over a 2-s period, whereas L2
offers an extra 52 s of coherency relative to L1.

Fig. 16 further illustrates the evolution of a 14-s segment
dual-band excess-phase observations reflected over sea ice.
In this case, the L2 SNR is higher than that of L1, and the L2
circular statistics are also above that of L1.
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Fig. 15. Example Spire reflection event over South China Sea of GPS PRN
10 signals reflection collected by Spire SVN 084. The satellite elevation angle
decreases from 15◦ to 7◦. (Top) L1 (black) and L2 (yellow) SNR. (Bottom)
�δφ circular statistics converted to the signed distance from the semicoherent
boundary level Bsc. This distance is normalized so that (K , ζ ) = (1, 1)
for complete coherent reflection. A negative value means that the data are
noncoherent. The semicoherent signal corresponds to 0∼0.5. The dots in the
bottom plot represent the cases where L1 and L2 have the same coherency
classification. There are clusters of dark triangles representing the cases where
L1 is noncoherent, while L2 is coherent. There is only one yellow triangle,
which represents when L2 is noncoherent, while L1 is coherent.

Fig. 16. Example GPS PRN 26 L1 and L2 reflection signal excess phase
over sea ice obtained from Spire SVN 090 on February 4, 2019, with 0 s at
10:15:32 UTC. From top to bottom: SNR; L1 excess phase δφ1; L2 excess
phase δφ2; and �δφ circular length and kurtosis statistics over 1-s data (x
for L1 and o for L2, red for coherent, blue for semicoherent, and gray for
noncoherent.

2) L1 and L2 Reflection Signal Circular Statistics Com-
parisons: Fig. 17 (top) shows scatter plots of L2 versus L1
phase-noise circular kurtosis for ocean (left) and sea-ice (right)
reflections. For the ocean plot, the data points can be separated
into two distinct sections: a circular area of noncoherent data
with low K values spanning the range of [−0.25, 0.25] and
an asymmetric cone-shaped extension with an apex at K = 1.

Fig. 17. (Top) Scatter plot of phase-noise �δφ circular kurtosis K for L2
versus (Left) L1 over ocean and (Right) sea ice. (Bottom) Number of L2
versus L1 coherent and semicoherent seconds in each reflection event. There
are 130 (260) “coherent” events over the ocean (sea ice).

In the cone-shaped region, the L2 statistics values are higher
than that of L1, as shown by the green squares that are the
median of the L1 statistic computed over a data bin width
of 0.05. Over sea ice, the plot is nearly symmetric around the
unit line, demonstrating that L1 and L2 statistics are consistent
with one another. The scatter plot of L1 and L2 phase-noise
circular lengths follows the same tendency (not shown) being
asymmetric in the coherent region over the ocean but almost
symmetric over sea ice.

We also computed the number of seconds when L2 and L1
reflections are coherent or semicoherent for events that include
at least one coherent or semicoherent second and plotted
the results in Fig. 17 (bottom). Generally, L2 provides more
coherent observations than L1 over the ocean. Over sea ice, L1
and L2 coherent occurrences are very close. The correlation
slopes between the number of L1 and L2 coherent segments
are 1.3 and 1.03 over the ocean and sea ice, respectively.
Table VII summarizes the observed coherency occurrence for
L1 and L2 over the ocean and sea ice and gives the coherency
percentages according to whether one of the signals is coherent
(L1∪L2), or both are coherent at the same time (L1∩L2). It is
clear that L1 and L2 do not always show coherency at the same
time. In weak coherent regions, they intermingle. However,
especially over the ocean, when L1 is coherent there is a high
probability that L2 will also be coherent, rather than the other
way around.

V. COHERENCY CLASSIFICATION VALIDATION

THROUGH ALTIMETRY RETRIEVAL

Previous studies on the Spire data have shown that cm-level
reflection surface height profiles can be obtained with better
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TABLE VII

SPIRE DATA PROCESSING RESULTS CLASSIFICATION ACCORDING TO L1 AND L2 DATA

Fig. 18. Phase altimetry retrieval geometry illustration.

performance over sea ice than the ocean water [33], [58].
The goal here is to assess the soundness of the coherency
level classification and evaluate the quality of the altimetry
retrievals in the three coherency regimes. In this section,
we first describe the process and methodology of altimetry
retrieval. Retrieval results and analysis over the ocean and
sea ice for coherent and semicoherent reflections are then
presented.

A. Phase Altimetry Retrieval Method

Phase altimetry retrieval is the estimation of the reflection
surface height above a reference height. We achieve it by
subtracting the direct signal phase measurements from the
reflected signal phase measurements received on the same
antenna. The procedure is similar to the ones described
in [25], [33], and [58]. Fig. 18 illustrates the geome-
try of the retrieval. The process is summarized in the
following.

Step 1: Obtain coherent phase estimations for direct and
reflected GPS L1 and L2 signals, φD

L and φR
L , by adding the

unwrapped phase residuals to the accumulated input Doppler
range model. Before the direct and reflected signal phase can
be used for the retrieval, the L1 excess phase must be corrected
from half-cycle jumps by demodulating the I/Q correlation
outputs with the navigation data bits. Then, the coherent
quality test is performed to detect segments that contain
coherent and semicoherent reflections from both reflected L1
and L2 signals.

Step 2 (Phase Estimation Filtering): Depending on the
amount of ocean scattered signal that contaminates the coher-
ent portion of the reflected signal, the reflected excess phase
may be noisy and contain cycle slips, which creates decimeter
level or larger jumps in the unwrapped phase. The Simultane-
ous Carrier cycle slip reduction and Noise Filtering (SCANF)

algorithm described in [58] is applied to the reflection obser-
vations to mitigate cycle slips and the noise effect.

Step 3: Compute the bistatic path delay between the
reflected and the direct signals

�ρL ,mea = λL
(
φR

L − φD
L

) + λLnL (6)

where λL is the carrier wavelength and nL is the integer carrier
ambiguity term.

Step 4: Compute HL , the surface height deviation from a
reference surface Sref

HL = −(
�ρL ,mea − �ρL ,mod

)

2 sin θ
= −�ρL ,res

2 sin θ
(7)

where θ is the GPS satellite elevation angle seen from the SP
and �ρL ,mod is the modeled bistatic path delay that includes
contributions from the geometric range, troposphere delay,
ionosphere advancement, and carrier integer ambiguity. Each
of these terms must be corrected to retrieve HL .

The geometric range is estimated based on the precise
positions of the GPS satellite, the Spire CubeSat, and the
predicted SP location on the reference surface Sref. In this
study, Sref is the combination of the DTU18 MSS [59] and
ocean tide from the TPXO8 global ocean tide model [60].
The SPs are computed using the iterative approach described
in [61]. The receiver position and clock bias are given in the
Spire metadata from the postprocessed Spire satellite POD
solution, which has cm-level precision [44]. The GPS satellite
position and clock bias are derived from the IGS precise orbit
data product (www.igs.org).

The tropospheric delay is estimated using the daily global
grids of zenith delay and VMF3 mapping functions from
the Technical University of Vienna [62]. The first-order
ionospheric carrier phase advance is estimated by differen-
tiating the L1 and L2 observations. The carrier ambiguity
is removed by subtracting a bias between the measured and
modeled bistatic delay residuals �ρL ,res to minimize the
RMS between HL and Sref. Therefore, the altimetry retrieval
provides a relative height profile above Sref along the specular
track.

B. Altimetry Retrieval Result Analysis

Datasets for each coherency regime are processed, and the
retrieved relative surface height profiles are analyzed. Unlike
the earlier studies [33], [58] where the reflection events last
more than 1 min, the dataset used in this study consists
of 30 s of observations within a specific coherency regime.
The 30-s duration is a compromise that ensures a sufficient
number of segments for analysis while still providing sufficient
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Fig. 19. Five examples of altimetry retrievals over 30-s Spire data sampled at 50 Hz shown in five columns. (a) Coherent over sea ice. (b) Coherent over
the ocean. (c) Semicoherent over sea ice. (d) Semicoherent over the ocean. (e) noncoherent. The rows from (top) to (bottom) are specular track; SNR (each
horizontal grid line is 20 v/v); raw unwrapped excess phase (each horizontal grid line is 50 cm); filtered excess phase; phase-noise �δφ circular statistics
(red: coherent; blue: semi; and gray: noncoherent); and altimetry height profile with mean satellite elevation angle over the specular track indicated on
the plots.

observations of deviations between the retrieved surface height
and the reference surface. The noncoherent regime provides
a baseline when there is no information content about the
reflected surface.

We found ∼120 coherent and 23 semicoherent sets that have
a duration lasting 30 s. The smaller number of a semicoherent
segment is due to the fact that they are embedded within
coherent or noncoherent segments. We randomly selected
120 sets of noncoherent segments. Fig. 19 shows example

profiles for the semicoherent and coherent regimes over the
ocean and sea ice, as well as one for the noncoherent regime.
A summary of the key parameters and retrieval results for
the five example profiles is provided in Table VIII. In the
following, we examine the properties and accuracy of these
example profiles.

1) Circular Statistics: The two coherent cases have �δφ

circular statistics parameters (ζ̄ and K̄ ) above (0.9, 0.7), while,
for the semicoherent examples, the average circular statistics
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TABLE VIII

SUMMARY OF CHARACTERISTICS OF THE EXAMPLE DATASETS SHOWN IN FIG. 18

are (0.8, 0.5) with minimum at (0.7, 0.4). The noncoherent
case has (ζ̄ and K̄ ) at (0.4, 0.2).

2) Reflection Signal SNR: Fig. 19 (row two) shows the
direct and reflection signal SNR for the five example profiles.
The SNR levels are above 15 v/v except for the noncoherent
example where it is ∼10 v/v. For the two coherent cases, the
SNRs over sea ice are above 60 v/v with L1 levels higher than
L2 by 50%. For the coherent example over the ocean, the SNR
levels are mostly at around 20 v/v but hit a minimum of 18 v/v
toward the end of the track. The coherent ocean reflection
example SNR levels are similar to that of the semicoherent
example over sea ice. Also notice that the differences in L1
and L2 SNRs depend on the dataset due to a combination
of factors such as the reflective surface properties, the GPS
antenna transmission patterns, and the Spire CubeSat antenna
gain patterns.

3) Phase Discontinuity and Filtering: The SNR level alone
is not sufficient to distinguish the coherent regime from the
semicoherent regime. In these examples, the semicoherent
regime is more clearly identified by the discontinuities in the
raw L1 and L2 unwrapped excess phases, as shown in the
third row of Fig. 19. For the coherent cases, the L2 signal
has no discontinuity, and there are only a few discontinuities
for the coherent ocean case in the L1 band. For the two
semicoherent cases, there are numerous discontinuities in L1
and L2. We applied the SCANF algorithm to reduce the noise
and discontinuities in the unwrapped phase measurements.
The results are plotted in the 4th row in Fig. 19. We use
the RMS difference between the filtered δφfilt and unfiltered
δφunw excess phases as a measure of the improvement in phase
discontinuity and noise reduction. The RMS values for the
example profiles are listed in Table VIII. The improvement is
clearly most prominent for semicoherent reflections although
the L1 coherent ocean reflection also required extensive repair.
In addition, the effect of the ionosphere can be clearly
observed by the divergence in δφfilt between L1 and L2, and
can be removed using the difference of the filtered dual-
frequency phase estimations.

4) Relative Surface Height Retrieval: The bottom row of
Fig. 19 shows the relative surface height retrieval results.
The coherent height profiles have an RMS difference of a
few centimeters at 50-Hz sampling. The semicoherent exam-
ples over sea ice have comparable quality as the coherent
ocean example, while the semicoherent ocean reflection RMS

Fig. 20. Histogram of the RMS difference (H −Sref) where H is the retrieved
altimetry profile over 30 s for coherent, semicoherent, and noncoherent
segments.

remains within 20 cm. Note that the SP elevation range is
lower at ∼6◦ for the semicoherent ocean case compared to
∼16◦ in the other sets. This makes its height profile more
susceptible to noise in the path delay variations from their
(sin θ)−1 relationship and larger troposphere errors. For the
noncoherent case, the surface height profile shows no relation
to Sref, with a large linear trend difference of more than
10 cm/s and an RMS at the meter level, as expected.

Finally, Fig. 20 plots the histogram of the RMS height
residuals for all cases and each coherency regime. It shows that
the majority of the RMS are below 5 cm and above 1 m for the
coherent and noncoherent regimes, respectively. The coherent
and noncoherent histograms are well separated. The semico-
herent regime seems to have one cluster with the decimeter
level RMS values. However, depending on the amount of
perturbation within the 30-s duration, the semicoherent RMS
can reach the meter level. If this is the case, the semicoherent
datasets can be further processed either to detect one large
jump or be discarded. The median RMSs over a 30-s segment
are 4.0, 8.5, and 116 cm over coherent, semicoherent, and
noncoherent domains, respectively. This result indicates that
the introduction of the semicoherent regime extends the con-
dition to a broader range of measurements that can potentially
yield precise altimetry height profiles. More discrimination and
quality control can be achieved by studying the RMS between
the raw and filtered excess phases.

VI. CONCLUSION AND DISCUSSION

A. Conclusion

This article presents an assessment of the coherency of
grazing angle reflected GPS signals received by Spire Global
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CubeSats. The phase coherency is determined using circu-
lar length and kurtosis of the excess-phase noise over 1-s
segments of data. Boundary values of these two circular
statistics indicators are defined to classify the reflection signal
as coherent, semicoherent, and noncoherent based on the
occurrence rate of carrier phase cycle slips and validated using
altimetry retrieval results. A noncoherent 1-s segment has 80%
and 15% or more probability of having one- and three-cycle
slip occurrences, respectively, in the 1-s segment of data,
while a coherent segment has less than 15% probability of
having a one-cycle slip and no probability of having three-
cycle slips. A semicoherent segment has statistics in between
these two boundaries. Detecting the semicoherent segments is
especially important over the ocean because of the relatively
low percentage of data in the coherent regime. Analysis of
three-month Spire CubeSat data indicates that, by combining
the semicoherent and coherent reflections, 1% and 44.3% of
GPS L2 reflections contain sufficient coherent energy over
the ocean and sea ice for altimetry retrieval, respectively.
These numbers drastically increase if we focus on ocean
reflections near coastlines and the sea-ice reflections over fresh
ice surfaces. For example, the worldwide combined coherent
and semicoherent reflection rate is 5.5% within 200 km from
coastlines. Under low wind conditions with wind speed less
than 6 m/s and SWH less than 1.5 m, this number increases
to 15%. In certain areas where the ocean is known to be calm,
such as the Indonesia Archipelago, the combined coherent
and semicoherent reflection rate can reach 23%. Our analysis
also found that, while there is a strong relationship between
coherency and signal SNR levels, a high SNR is not a
sufficient condition for coherency. There are more coherency
occurrences as the SP elevation decreases. The qualities of
the L1 and L2 coherent reflected GPS signals over sea ice
are similar, in contrast to noisier L1 reflected signals over the
ocean. In general, the SNR levels over sea ice are stronger
and the coherency duration length is longer compared to over
the ocean surface. The coherency spatial patterns over sea
ice also have a strong dependence on an ice age, with the
fraction of coherent reflections being higher over younger,
newer ice. Based on the Spire data analysis, the coherent and
semicoherent reflection rate is 70% over the first year, fresh
sea ice in the Arctic region. As the ice ages, this rate goes
down to 32%.

Finally, this study shows that, by using postprocessing
filtering methods, such as SCANF, the semicoherent reflection
signals can be used to retrieve surface height with nearly the
same precision as that of coherent reflection. This is especially
true when the semicoherent segments are embedded within
coherent ones. The inclusion of the semicoherent segments
will increase the along-track length of the retrieved altimetry
profile without the need to change the hardware/software
onboard the LEO satellites.

B. Discussion

The coherency analysis presented in this article is lim-
ited to the hardware and processing software quality of
the Spire Global CubeSats. Better antenna gain, improved

hardware calibration, and more accurate reference generation
will improve reflection signal coherency rate over the ocean
and sea ice. With the increasing quantities of observations,
the Spire Cryosphere research group already classified sea
ice over the Arctic during Spring 2020, exploiting the sig-
nature of ice age on the reflected signal using the circular
length phase-rate parameter [31]. This new data collection
with better temporal and spatial coverage offers the opportu-
nity for cross-validation and precision ocean/sea-ice altime-
try validation with other platforms, such as IceSat2 and
Sentinel 3.
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